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Supplementary Information 20 

Section A – Extensive Literature Review 21 

Scales of Collaborative Activity, from the Desk to the Globe 22 
A. Microgeographies: The Desk 23 
The configuration of personal workspaces – at the scale of a desk in a room – certainly define social 24 
interactions. Those configurations may also define the types of ideas that are collaboratively generated, 25 
through increasing exploration during low opportunity-cost time, and enabling accelerated iteration during 26 
early or uncertain phases of collaboration [1,2]. Yet in the case of workplace microgeography, it is often 27 
difficult to identify cause and effect: whether researchers work nearby because they collaborate, or if they 28 
collaborate because they work nearby. To address concerns of endogeneity in microgeographic 29 
organization, studies have been designed to exploit a random exogenous factor – for example, the 30 
unexpected spatial reconfiguration of researchers. Over the course of a move to new premises, Peponis 31 
[3] conducts survey-based social and spatial network analysis, finding that layout can contribute to 32 
frequency and volume of communication. A similar analytical design by Catalini (focusing on 33 
reconfigurations during building closure for asbestos screening), demonstrates that, beyond simply 34 
provoking communication, shifts in proximity lead to increased experimentation and eventually to 35 
stronger ‘breakthrough ideas’ [1].  36 
B. Hubs: The Building 37 
The majority of the literature reviewed previously – that addressing lab configurations, office proximity, 38 
space syntax, collaboration and re-configuration – falls within the architectural scale.  39 
C. Ecosystems: The District 40 
Although it has no discrete boundary or categorical definition, the ‘district’ is perhaps the most relevant 41 
scale for innovation processes with respect to commercialization. There is a rich literature from urban 42 
planning, management, organization science and economics, as well as an emerging field of innovation 43 
science, that considers this so-called ‘ecosystem’ or ‘cluster’ – an area smaller than a city, and more 44 
heterogeneous than a campus. Topical literatures have emerged around specific terms and definitions, but 45 
all address this district scale. These include ‘Marshallian industrial districts,’ ‘innovative milieus,’ ‘new 46 
industrial spaces,’ ‘innovation networks,’ ‘regional network evolution,’ and most recently, the 47 
‘ecosystem-approach’ [4,5]. Each has a unique classification – for example the ‘cluster’ definition is a 48 
geographic concentration of interconnected companies and associated institutions in a particular field, 49 
linked by commonalities and complementarities [4,6,7].  50 
This work – and the management science literature in general – primarily addresses market-related 51 
characteristics and effects of proximity. Porter’s seminal work on entrepreneurial clusters, for example, 52 
describes inter-firm relationships, and evaluates such phenomena as the competitive transfer of financial 53 
and human capital. In contrast, the present analysis focuses on interrelations, knowledge-creation and 54 
technology transfer outside of (or prior to) commercialization, but nonetheless accesses the literature 55 
describing general effects of geographical and institutional proximities (campus space and departments, 56 
respectively). 57 
The innovation ecosystem, as defined in the MIT Stakeholder Model is a vibrant, co-located 58 
agglomeration of high-growth potential firms and related stakeholders, an interconnected set of people, 59 
resources and the physical environment that provides the context for innovation-driven enterprises to start, 60 
grow and scale. The model describes place-based interrelations of five key stakeholders: entrepreneurs; 61 
universities or research institutes; government; corporations; and risk capital.  62 
D. Agglomerations: The City 63 
Understanding collaboration and innovation at the urban scale (and the inter-urban, national and global 64 
scales) demands fundamentally different tools and procedures. It is at the metropolitan level that data 65 
becomes big data, beyond this threshold it can only be approached through a specialized set of statistical, 66 
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social, mathematical and computational analysis techniques – from the collection, management and 67 
processing of data, to the application of statistical models, to means for addressing concerns of subject 68 
privacy, and even to visual representation and dissemination. 69 
Intuitively, metropolitan-scale conclusions can be drawn using this approach. Stern and Guzman, for 70 
example, interact a number of publicly available data points related to new firms (including name, 71 
keywords, intellectual property, legal status, etc.) and construct an ex-ante model of entrepreneurial 72 
quality: the statistical likelihood of success outcomes, defined as acquisition or IPO. The resulting 73 
Regional Entrepreneurship Cohort Potential Index (RECPI) can be trained on metropolitan regions to 74 
estimate the impact of a city itself on its firms: the Regional Entrepreneurship Acceleration Index (REAI) 75 
measures the performance over time as the ratio between the statistical success potential of a cohort of 76 
firms and their observed success rate in that city. This tool has been used to evaluate and compare cities 77 
across the United States, finding characteristic patterns of entrepreneurship [8].  78 
Even more generally, certain urban effects related to collaboration and knowledge output are quantifiable 79 
through a big data analysis approach. For example, a number of metropolitan phenomena – including 80 
patent filings, for example – scale superlinearly with city size [9]. An empirical model proposed by 81 
researchers at the Santa Fe Institute is consistent across cities, time periods and nations. Derivative growth 82 
equations evidence a number of urban taxonomies, for example, the distinction between urban growth 83 
fueled by entrepreneurial innovation versus growth through economies of scale, as measured by wealth 84 
and patents [10]. Trends in collaborative invention are significantly spatialized as well. Large metropolitan 85 
areas tend to have a higher number of patents and larger team sizes: an average of greater than three co-86 
inventors. The most highly productive metropolitan areas have over four inventors per patent [11]. In the 87 
case of inter-urban and global collaborations, a characteristic distance – unique to specific fields – can be 88 
quantified [12]. 89 
These, and a number of related studies, access scientometric observables (for example, collaboration, 90 
publication density, co-inventor distance, and others) and apply macro-level tools of urban science, 91 
delivering valuable insights at a low level of spatial granularity. For the purposes of the present research, 92 
city-scale dynamics are important for contextualization, but specific results are not easily transferrable to 93 
the campus or building scale.  94 
 95 
Observing Scholarship: Faculty, Papers and Patents 96 
Proximity-enabled communication – whether in the lab, the building, the campus, the institution, or the 97 
cluster – is a crucial enabler of scientific knowledge creation. Place is at the core of the university model 98 
throughout history. Yet for intellectual material to be recognized, validated, and built upon or 99 
commercialized, it must be codified and disseminated to the global scientific community, specifically, as 100 
papers and patents: observable knowledge objects. Although these documents are not comprehensively 101 
representative of intellectual activity at a given institution (and their role varies dramatically across 102 
disciplines), they nonetheless offer a systematic proxy for scholarly output. Bibliometric data enables 103 
empirical analysis of impact, affiliation, collaboration, and citation over time.  104 
For the purposes of this study, we consider papers published in peer-reviewed journals, and patents filed 105 
through the MIT Technology Licensing Office, but a portrait of scholarly activity at MIT should be 106 
contextualized by broader trends in scientific production. In the case of paper publishing by the global 107 
scientific community, individual productivity (on both single-author and collaborative observations) has 108 
a fat-tailed distribution: a small number of scientists produce a very large number of papers, and this has 109 
been consistent over time (from Lotka’s Law of Scientific Productivity, proposed in 1926, to Newman’s 110 
network analysis in 2001 [13]). Synthesizing several estimations of bibliometric data, Borner proposed a 111 
general model for the growth of scientific publishing as well as co-authorship and citation trends, 112 
successfully validated against twenty years of publication data from the Proceedings of the National 113 
Academy of Sciences [14]. The global rate of increase in scholarly publication (estimated as the number 114 
of cited papers that are subsequently cited) is approximately 8% [15]. 115 
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The World Intellectual Property Organization (WIPO) estimates a similar growth for intellectual property. 116 
Excepting a downturn during the global economic crisis in the years 2008 and 2009, the rate of increase 117 
in patenting is now approximately 9.2%.  College, university, and institute patents represent between 4.2 118 
– 4.7% of U.S. nongovernmental patents, of which Massachusetts Institute of Technology holds an annual 119 
average of 4.2% (of all U.S. patents granted to U.S. academic institutions).   120 
 121 
The Porous Walls of the Institution: Managing Technology Transfer 122 
A categorization of research is particularly relevant with respect to incentives and procedures for 123 
publication, implementation and commercialization. Technology transfer is an important economic driver, 124 
and foregrounds the role of intellectual property rights policies [16]. The pathway from research to 125 
commercialization was fundamentally redefined in 1980 with the Bayh-Dole Act (or Patent and 126 
Trademark Amendments Act) that is in place today. The act systematized and unified patent policy across 127 
federal agencies, and allowed for universities and research institutes to hold patents that result from 128 
government funded research. This legal measure shifted incentives for researchers of all levels to patent 129 
and license through the institution, and and for the organization itself to engage in joint research ventures 130 
or enable spinoff startup companies. An increase in the commercialization rate of university-based 131 
technology following 1980 can be attributed in some part to the Bayh-Dole Act.  132 
A more explicit approach to technology licensing has given rise to the ‘economics of intellectual property’ 133 
at universities and research institutions [17]. Many institutions now have technology transfer offices that 134 
serve to manage the exit dynamics of scientific research. Although terms are unique to each organization, 135 
in most cases there are clear motivations for faculty to disclose and file patents through the institution, at 136 
various stages of technical resolution, from proof of concept to product [18].  137 
At MIT, the Technology Licensing Office (TLO) assists the passage of research from the lab to the market, 138 
through patenting and licensing. The TLO interfaces with large corporations, SMEs and startups ¬– 139 
brokering the legal use of patented MIT research – and generally assists students, faculty and staff with 140 
their pursuit of innovation-driven work. The TLO files patents with USPTO, and has worked with an 141 
average of 20-27 new firms per year from 2000 to 2014.  142 
 143 
Time Delays in Academic Output 144 
There is a significant time delay in the course academic production from idea to publication. The 145 
sequences for papers and patents are categorically different, resulting in a significant discrepancy between 146 
overall time delay (a discrepancy generative of certain experimental structures, e.g. Murray and Stern, 147 
2007 [19]). Although there is variation across fields, papers are accepted, on average, 6.4 months after 148 
submission, and are published 5.8 months after acceptance – the total average time delay is 12.2 months 149 
from submission to publication in a journal. The patenting process is substantively different, and tends to 150 
vary widely between different contexts. In the case of MIT, an individual approaches the TLO with a 151 
patent application, and works with the office to revise the document. A formal application is filed by TLO 152 
at the US Patent and Trademark Office between 0 and 5 months later, depending on revisions. There is 153 
then a period of 24-36 months before review by a patent examiner, followed by a granting decision period 154 
of 12-24 months. The total time elapse from submission to granting is an average of 2.5-5 years.   155 
 156 
Section B - Data Analysis 157 
Original Data: Directory 158 
Directory information is from the MIT Directory (accessed in the MIT Data Warehouse, via the Office of 159 
Institutional Research). The full dataset includes all MIT affiliates, including students, researchers, 160 
fellows, tenure track and non-tenure track faculty, etc. The MIT directory contains location-attributes for 161 
offices (building, floor and room), as well as affiliation attributes (school, department, or lab), but the 162 
information is not recorded for every person (see B2). The MIT Data Warehouse commits a regular 163 
‘freeze’ of the data, such that time-dependent information is captured (e.g. changes in affiliation or title). 164 



 5 

 165 
Original Data: Publication 166 
Publication information is from a comprehensive list aggregated by Academic Analytics, a non-167 
institutionally affiliated data analytics company. Academic Analytics aggregates publication data from 168 
scholarly journals, for the purposes of evaluation, strategic decision-making, and benchmarking in 169 
universities. Publications in the Academic Analytics database have been consistently filtered with a 170 
proprietary algorithm to match individual authors, and the company’s total database includes over 270,000 171 
individuals from over 10,000 departments in 385 universities.  172 
MIT-specific data has been acquired by the Office of Institutional Research (OIR) and is stored in the 173 
MIT Data Warehouse. The dataset includes papers published by MIT-affiliated individuals in peer-174 
reviewed journals with DOI number identifiers, as well as date, and authorship. Data is stored such that a 175 
paper is associated with an MIT ID, and the same paper is repeated if there are more than one MIT authors 176 
on the paper. There are 65,536 MIT authorship instances (with repeated DOIs) and 52,511 papers (with 177 
unique DOIs) spanning the years 1959 to 2015. In this dataset, there are 1,440 total MIT authors (faculty 178 
and non-faculty). 179 
 180 
Original Data: Patent 181 
Patent information is from the database of patent applications filed through the MIT Technology Licensing 182 
Office (TLO) and aggregated in the MIT Data Warehouse (via the OIR). The dataset includes a unique 183 
identifier (Patent Serial Number) for each patent, as well as date of filing, MIT ID of primary inventor, 184 
and total authorship (all inventors listed on the patent). There are 7,344 patents, and 5,487 MIT inventors 185 
(faculty and non-faculty) over the years 1938 to 2015.  186 
 187 
Pre-Processing Data 188 
Through pre-processing the total databases, several necessary limitations and filters have been introduced 189 
to increase accuracy of the data under consideration. These filters are: B1. Time Frame (2004 – 2014); 190 
B2. Affiliation (Tenure and Tenure-track Faculty) to arrive at a final dataset, C. 191 
 192 
Pre-Processing: Time Frame 193 
The temporal limitation has two reasons. First, there was a sharp increase in the number of recorded papers 194 
in the year 2003, which may have resulted from Academic Analytics’ migration to a digital database for 195 
content management. Although there are a small number of papers recorded as early as 1959, trends and 196 
attributes are not consistent before and after the shift. Secondly, the practice of regular data ‘freezes’ 197 
committed by OIR / MIT Data Warehouse began in 2004. In the interest of understanding changes over 198 
time (e.g. hiring or departing, affiliation, promotion, office location) rather than working under the 199 
assumption that a faculty member’s current status is true of past years, we consider only this range, 200 
limiting the data to the time frame 2004-2014. 201 
 202 
Pre-Processing: Affiliation 203 
There are numerous modes of affiliation to MIT, many of them involved with the processes of research 204 
and the production of academic output. For example, an undergraduate student may participate in 205 
groundbreaking research and be listed as an author on a paper with her Principal Investigator. A 206 
comprehensive portrait of scholarly activity at MIT would capture these myriad interactions.  207 
However, several attributes are consistent only for a subset of the MIT community – the result both of 208 
structural factors and data management. The former is intuitive: in the case of the UROP, she would not 209 
have a designated office location or even a departmental affiliation. The same is true, to varying levels of 210 
consistency, up to the level of post-doctoral fellows, lecturers, or professors of the practice. Furthermore, 211 
the data ‘freeze’ only captures attributes for certain levels of affiliation. The subset with full consistency 212 
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is tenure and tenure track faculty, who are necessarily affiliated to a department and located in an office. 213 
As such, the most accurate and consistent directory includes only faculty who are tenure or tenure track.  214 
 215 
Data Summary 216 
The dataset under consideration for the remainder of the study is characterized in Table 1.  217 
 218 
Spatial Data 219 
Spatial data describing the MIT campus is joined from several different sources. Building shapefiles (in 220 
GIS format) are from the Department of MIT Facilities and overlaid on publicly available map tiles (from 221 
OpenStreetMaps via CartoDB). Building-level data (area, facility use codes, office numbers and floors) 222 
are from the MIT Data Warehouse. The databases are linked using building code (e.g. Bulding E70; 223 
Building 9). 224 

Section C - Simpson Diversity Index 225 
For a given number of types, the value of a co-affiliation index ( C ) is maximized when all types are 226 
equally abundant. In this case, the number of species i = 1, 2, ..., d are defined by the total number of 227 
unique departments or buildings, and the number of different unique collaborators ni who belong to a 228 
given type i. If an observation is characterized by N authors and d types, the diversity index is given by: 229 
 230 

C = 1
N(N −1)

ni (ni −1)
i=1

d

∑         (Eq. S1) 231 

 232 
Where the co-affiliation value ( C ) of a single observation is a function of total number of contributors ( 233 
N ), from a total number of departments ( d ), and ( ni ) number of contributors from each of those 234 
departments ( i ). Values are on a scale from 0 to 1, representing least to greatest co-affiliation or co-235 
location among collaborators.   236 

Section D - Shannon Entropy of Information 237 

The measure was originally proposed to quantify entropy in strings of text: the greater the difference in 238 
letters, and the more equal their proportional abundances in the string of interest, the more difficult it is to 239 
correctly predict which letter will be the next one in the string. The Shannon equation is applicable more 240 
broadly to quantify balance of information content, accounting for variety and quantity. In the case of MIT 241 
campus, we apply the following function to characterize buildings. Given a building k its heterogeneity 242 
index λk  is then defined as: 243 

λk = − pi ln pi
i=1

Dk

∑        (Eq. S2) 244 

 245 
Where Dk = number of different departments in building k, and pi is the fraction of people who belong to 246 
the department i. It is defined as: 247 
 248 

pi =
Nik

Nk

        (Eq. S3) 249 

 250 
Where Nik is the number of people that belong to department i in the building k, while Nk are the total 251 
number of people working in building k. 252 
 253 
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Section E – Tables 254 
 255 

Department 
 

Patent 
to 
Paper  
Ratio 

Number 
of 
Faculty 
Authors 

Total 
Papers 
/ 
Person 

Total 
Papers 
 

Average 
Annual 
Increase 

Intra-
MIT 
Collab. 

Number  
of Faculty 
Inventors 

Total 
Patents 
/ 
Person 

Total 
Patents 
 

Average 
Annual 
Increase 

Intra-
MIT 
Collab. 

Biology 0.036 60 59.28 3557 14.52 20.4% 33 3.79 125 0.34 21.6% 
Chemical 
Engineering 0.132 35 80.17 2806 14.47 25.3% 26 14.96 389 5.03 34.2% 

Chemistry 0.096 34 79.12 2690 2.87 15.3% 22 11.68 257 1.7 30.0% 
Electrical 
Engineering & 
Computer Science 

0.069 135 58.47 7893 13.95 25.2% 90 6.2 558 6.25 30.1% 

Materials Science 
and Engineering 0.117 35 73.00 2555 7.76 25.1% 28 10.57 296 1.03 30.7% 

Mechanical 
Engineering 0.098 79 48.06 3797 26.51 17.8% 54 7.26 392 5.09 18.9% 

Physics 0.019 82 54.52 4471 3.85 29.8% 6 14.5 87 0.25 78.2% 
Program in Media 
Arts & Sciences 0.135 22 47.41 1043 7.72 12.7% 17 8.88 151 2.2 5.3% 

 256 
Table A. Patent and paper output by department, for the top six departments in each category. Patent to 257 
Paper Ratio represents the total number of patents from a department divided by the total number of 258 
papers, such that 0 represents a department without patents and 1 a department without papers. Intra-MIT 259 
Collaboration is calculated as an average of the number of documents with another MIT faculty member 260 
vs. the total number of documents, such that values closer to zero represent a lower rate of intra-MIT 261 
collaboration. Number of Faculty enumerates the total number of publishing faculty from a given 262 
department, during the time frame. Average Annual Increase represents the slope of the trend line in output 263 
per year, a measure of the average increase in output year-to-year, by department 264 
 265 
 266 

Building Papers per 
Building 

Intra-MIT 
Collaboration 

Papers per 
Person 

Patents per 
Building 

Intra-MIT  
Collaboration 

Patents per 
Person 

32 4166 27.8% 110.0 140 30.7% 3.68 
3 2570 19.3% 93.0 290 21.4% 8.29 
13 2370 27.5% 78.9 278 45.7% 12.64 
36 1949 19.6% 78.4 171 19.3% 7.77 
6 1704 20.5% 77.4 157 42.0% 13.08 
66 1662 28.8% 71.8 169 46.2% 8.45 
46 1607 13.6% 67.2 69 7.2% 3.63 
54 1372 12.2% 60.5 1 100% 1 
68 1330 24.1% 59.4 22 9.1% 2.44 
33 1285 16.8% 59.2 40 25.0% 4.44 

 267 
Table B. Patent and paper output per building, for the top ten buildings, during the entire time frame. 268 
Output per Person represents the average individual output aggregated to the building level. Intra-MIT 269 
Collaboration is calculated as the number of documents with another MIT faculty member versus the total 270 
number of documents (aggregated to the building level), such that values closer to zero represent a lower 271 
rate of intra-MIT collaboration. 272 
  273 
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 274 
    Papers   Patents   

Building Depts. Shannon 
Entropy 

Average 
ft.2 

% MIT 
Collab. 

Papers Per  
Person 

Papers % MIT 
Collab. 

Patents Per 
Person 

Patents 

3 9 1.56 340.50 19.3 47.59 2570 21.4 8.29 290 

E40 8 2.06 256.80 17.4 13.08 340  - - - 

32 8 1.71 398.53 27.8 39.68 4166 30.7 3.68 140 

16 8 1.44 175.80 26.6 31.92 830 23.9 6.77 88 

E25 7 1.64 479.15 16.8 36.33 981 17.5 10.36 114 

7 6 2.45 350.54 12.5 4.80 48  - - - 

1 6 1.28 344.08 12.3 29.85 1015 35.7 1.56 14 

76 6 0.89 358.75 31.7 28.52 713 27.2 7.52 158 

E38 5 2.28 354.48 21.1 6.33 57 100 1.00 1 

10 5 1.99 145.95 19.9 18.17 527 44.6 6.22 56 

 275 
Table C. MIT campus building attributes. Although there are no global correlations between 276 
heterogeneity and the observed indicators of academic output, there are nonetheless specific correlations 277 
between number of departments and output (notably, Buildings 3 and 32). Shown here are the ten buildings 278 
with the highest number of departments. % MIT Collaboration represents the percentage of observations 279 
that are with an MIT faculty collaborator versus the total number from that building. 280 
 281 
 282 
 283 
 284 
Diversity Papers Patents 

Building 0.40 0.51 

Department 0.29 0.70 

 285 
Table D. Community diversity is a measure of the number of different buildings or departments 286 
represented in each group, normalized by community size.   287 
 288 
 289 

290 
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Section F – Figures 291 
 292 
 293 
 294 
 295 
 296 
 297 
 298 
 299 
 300 
 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
 311 
 312 
 313 
Figure A. Patent and paper output per building per year, from 2004 to 2014. This represents output 314 
from faculty during the year they were sited in a particular building – accounting for spatial relocations. 315 
Building 76, the Koch Institute, was opened in 2010 and by 2013 had become the top patenting building. 316 
 317 
  318 
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A 

 
B 

Figure B. Nodes degree distributions for A) Paper s and B) Patents networks. 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
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 331 
 332 
Figure C. The relative frequency of collaborations between  MIT faculty from different 333 
departments, plotted against their spatial distance on campus. A) Papers and B) Patents.  As distance 334 
between two faculty members increases, the likelihood of their collaboration decreases according to a 335 
negative exponential function. The same pattern holds true for patents and papers. 336 
 337 
 338 
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 339 

Figure D. Communities in the A co-authorship and B co-invention networks. C) The detailed 340 

views of the communities in the co-authorship network shows that seem to be more topically 341 

defined, in this case, Earth Atmospheric & Planetary Sciences, or Sloan and Economics. D) 342 

Communities in the co-invention network are more heterogeneous, comprising faculty from 343 

several different departments.  344 

 345 

 346 

 347 

 348 

 349 

 350 
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